
Automated Trace File Generator for

Virtual Machine Technique Evaluation

Outline

• A trace file generation which mimics the behavior of an application in
a virtual machine was developed.

• Based on specified probabilistic parameters, trace file of arbitrary
structure and size can be created for experimentation purposes.

• An n-generational garbage collection policy was implemented in
order to test and evaluate the benefits and trade offs of multiple
garbage collection generations.

• The evaluation of the policy was performed using the trace file
generator.

Motivation

• Virtual machine testing relies on existing applications. The size and
structure of a benchmark is application specific.

• A general evaluation of a garbage collection technique based on
probabilities provides the benefit on testing different application
structures without the need of an actual application.

• Trace files mimic application behaviour in handling memory on the
heap such as object creation and reference change.

Trace File Generator

• A random walk based algorithm which generates allocations and
reference changes, creates an object graph aiming to mimic the
objects of an actual application.

• Parameters which are taken into account during generation of the

trace file include: min/max object size, reference/allocation operation,
min/max reference count, root set size, thread number.

• Trace files implement a specified structure, which can be used as
virtual machine input for testing purposes.

• Specific application behavior can be mimiced using extracted
probabilistic characteristics of the application.

n-Generational GC

• Implemented from scratch in C++.

• Implements the generational garbage collection policy.

• Allows developers to change the generation count, collection policy for
different generations, generation sizes, promotion age and others.

• Currently available collection policies are Mark Sweep, Mark Compact
and Copying Collection.

• Object oriented implementation allows the implementation of additional
collection policies for experimentation without the overhead of an
actual virtual machine.

Results*

• The trace file proides a rough estimate of application behavior as
parameters used for evaluation were not taken from an actual
application.

• Trade offs identified for n-generational garbage collection include that
higher promotion age, higher generation count and lower heap size
ration between generations (old/young) reduce time spend for each
garbage collection, but increase the GC count.

Konstantin Nasartschuk, Marcel Dombrowski, Kenneth B. Kent
University of New Brunswick

Faculty of Computer Science

kons.na@unb.ca, marcel.dombrowski@unb.ca, ken@unb.ca

Figure 1: Object oriented structure of the n-Gen-GC implementation

Figure 2: Allocated space comparison between traditional policies

and 3-gen-GC
* Results unpublished at time of poster submission

