Outline

» A trace file generation which mimics the behavior of an application In

Automated Trace File Generator for
Virtual Machine Technique Evaluation

Konstantin Nasartschuk, Marcel Dombrowski, Kenneth B. Kent
University of New Brunswick
Faculty of Computer Science
kons.na@unb.ca, marcel.dombrowski@unb.ca, ken@unb.ca

a virtual machine was developed.

 Based on specified probabilistic parameters, trace file of arbitrary

structure and size can be created for experimentation purposes.

 An n-generational garbage collection policy was implemented In
order to test and evaluate the benefits and trade offs of multiple

garbage collection generations.

 The evaluation of the policy was performed using the trace file

generator.

Motivation

* Virtual machine testing relies on existing applications. The size and

structure of a benchmark is application specific.

A general evaluation of a garbage collection technique based on
probabilities provides the benefit on testing different application

structures without the need of an actual application.

* Trace files mimic application behaviour In handling memory on the

heap such as object creation and reference change.

Trace File Generator

A random walk based algorithm which generates allocations and
reference changes, creates an object graph aiming to mimic the

objects of an actual application.

Y

allocate()

full()

>

collect)

Memory
Manager

Roots

remsSet

remSet
0

remSet

Collector0 ——free()»| Allocator 0
]
allocate()
—
Collector 1 —free()»| Allocator 0
]
allocate()
—
Collector 2 —free()»| Allocator 0
]
allocate()
—
Collector 3 —free()»| Allocator 0

Objects
0

Objects
1

Objects

Objects

(global)

Figure 1: Object oriented structure of the n-Gen-GC implementation

))
UNB

IBM Centre for Advanced Studies - Atlantic

Parameters which are taken into account during generation of the
trace file include: min/max object size, reference/allocation operation,
min/max reference count, root set size, thread number.

Trace files implement a specified structure, which can be used as
virtual machine input for testing purposes.

Specific application behavior can be mimiced using extracted
probabilistic characteristics of the application.

n-Generational GC

Implemented from scratch in C++.
Implements the generational garbage collection policy.

Allows developers to change the generation count, collection policy for
different generations, generation sizes, promotion age and others.
Currently available collection policies are Mark Sweep, Mark Compact
and Copying Collection.

Object oriented implementation allows the implementation of additional
collection policies for experimentation without the overhead of an
actual virtual machine.

Results*

180000

150000

140000

120000

100000

The trace file proides a rough estimate of application behavior as
parameters used for evaluation were not taken from an actual
application.

Trade offs identified for n-generational garbage collection include that
higher promotion age, higher generation count and lower heap size
ration between generations (old/young) reduce time spend for each
garbage collection, but increase the GC count.

80000

0000

40000 m— MarkCompact

T race File
20000

SJGeniGC

M@ kS weep

| | | | | | | | |
4000 6000 8000 10000 12000 14000 15000 18000 20000

|
0 2000

Figure 2: Allocated space comparison between traditional policies
and 3-gen-GC
* Results unpublished at time of poster submission

FACULTY OF COMPUTER SCIENCE

